目录

SGU 112 - a^b - b^a

Description

You are given natural numbers $a$ and $b$. Find $a^b - b^a$.

Input

Input contains numbers $a$ and $b$ ($1\leq a,b\leq 100$).

Output

Write answer to output.

Sample Input

1
2 3

Sample Output

1
-1

Analysis

非常明显的高精度,再观察一下样例,要处理减法,而且有负数,注意一下好了。

Solution

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <iostream>
#include <memory.h>
 
using namespace std;
 
const int MAX = 1024;
const int HEX = 10000;
const int BIT = 4;
 
class Huge
{
public:
    Huge();
    Huge(int x);
    ~Huge();
     
public:
    Huge& operator *= (int x);
    Huge& operator - (Huge &x);
    bool operator > (Huge x);
     
public:
    friend ostream& operator << (ostream &out, Huge &x);
     
public:
    int m_pData[MAX];
    int m_nLen;
};
 
Huge::Huge()
{
    memset(m_pData, 0, sizeof(m_pData));
    m_nLen = 1;
}
 
Huge::Huge(int x)
{
    memset(m_pData, 0, sizeof(m_pData));
    m_pData[1] = x;
    m_nLen = 1;
}
 
Huge::~Huge()
{
     
}
 
bool Huge::operator > (Huge x)
{
    if(this->m_nLen != x.m_nLen)
    { return this->m_nLen > x.m_nLen; }
    else
    {
        for(int i = this->m_nLen; i >= 1; i--)
        {
            if(this->m_pData[i] != x.m_pData[i])
            { return this->m_pData[i] > x.m_pData[i]; }
        }
    }
    return true;
}
 
Huge& Huge::operator *= (int x)
{
    for(int i = 1; i <= this->m_nLen; i++)
    { this->m_pData[i] *= x; }
    for(int i = 1; i <= this->m_nLen; i++)
    {
        this->m_pData[i + 1] += this->m_pData[i] / HEX;
        this->m_pData[i] %= HEX;
    }
    while(this->m_pData[this->m_nLen + 1]) { this->m_nLen++; }
    return *this;
}
 
Huge& Huge::operator - (Huge &x)
{
    bool bFlag = (*this > x);
    if(!bFlag) { swap(*this, x); }
    Huge *ans = new Huge();
    ans = this;
    for(int i = 1; i <= ans->m_nLen; i++)
    {
        ans->m_pData[i] -= x.m_pData[i];
        if(ans->m_pData[i] < 0)
        {
            ans->m_pData[i + 1]--;
            ans->m_pData[i] += HEX;
        }
    }
    while(!ans->m_pData[ans->m_nLen] && ans->m_nLen) { ans->m_nLen--; }
    if(!bFlag) { ans->m_pData[ans->m_nLen] = -ans->m_pData[ans->m_nLen]; }
    return *ans;
}
 
ostream& operator << (ostream &out, Huge &x)
{
    out << x.m_pData[x.m_nLen];
    for(int i = x.m_nLen - 1; i >= 1; i--)
    {
        if(x.m_pData[i] < 1000) { out << "0"; }
        if(x.m_pData[i] < 100) { out << "0"; }
        if(x.m_pData[i] < 10) { out << "0"; }
        out << x.m_pData[i];
    }
    return out;
}
 
int main()
{
    int a, b;
    while(cin >> a >> b)
    {
        Huge x(a), y(b);
        for(int i = 1; i < b; i++)
        { x *= a; }
        for(int i = 1; i < a; i++)
        { y *= b; }
        cout << x - y << endl;
    }
    return 0;
}

高精度是我最惧写的,因为太麻烦,每次都要写上百行,还要重载运算符,弄不好还需要进行调试。